

Globalization and Electronic Commerce: Environment and Policy in Brazil

October 2002

Paulo Bastos Tigre Universidade Federal do Rio de Janeiro Av. Pasteur, 250. Urca. Rio de Janeiro-RJ CEP 22290-240 Brazil paulotigre@aol.com ptigre@ufrj.br

Jason Dedrick Senior Research Fellow Center for Research on Information Technology and Organizations University of California, Irvine jdedrick@uci.edu

Acknowledgement: This research is part of the Globalization and E-commerce Project of the *Center for Research on Information Technology and Organizations* (CRITO) at the University of California, Irvine. The material is based upon work supported by the National Science Foundation under Grant No. 0085852. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Partial support from the Brazilian Council of Science and Technology Development (CNPq) is also acknowledged.

SUMMARY

- In Brazil, high inflation rates and public policies for local information technology (IT) development encouraged the early adoption of IT, including electronic data interchange (EDI), especially in the banking industry.
- Since the early 1970's, Brazil has developed capabilities both in production and use of information technologies. Mexico and Brazil are the only Latin American countries with a substantial IT hardware production.
- The development of the Internet in Brazil was somewhat similar to the NSF Net program in the United States. The National Research Network (RNP) began to operate a national backbone in 1991 and from 1996, it became available for commercial purposes.
- Since inflation control became the highest priority in economic policy in the 1990s, the Brazilian economy has been growing at a relatively slow pace compared to historical growth rates. Brazil ranks third in the Americas in GDP value. However, in per capita terms, it falls behind the top five wealthiest countries in Latin America.
- Education levels increased substantially in the last decade. Primary education was almost universalized (95.7%) and 78.5% of the population in the secondary education age group was enrolled, against less than 60% in 1992.
- In 2000, investments in telecommunications as a percentage of the GDP were the highest in Latin America. In the last four years, fixed lines teledensity doubled while cellular subscribers quintupled. In per capita terms, Brazil is now at the Latin American average, both in fixed line and cellular phones. In 2000, teledensity was about 23 fixed lines per 100 people, 15% of which were connected to the Internet.
- The government has been active in promoting e-commerce diffusion, especially through the e-government initiative. This includes on-line purchasing, government information, tax collection and other applications. However, government programs lack coordination and resources.
- The use of the Internet as a business tool is more noticeable in information related sectors like finance, communications, information services, and other services that can be easily digitized. The banking sector leads e-commerce diffusion, followed by government and retailing.
- Consumers in countries such as Brazil are increasingly demanding products from Web sites located in their own countries. In order to succeed in the e-commerce market, multinational Internet services providers need to invest in local content and distribution networks.
- The diffusion of the Internet presents many opportunities for social development, notably in the fields of education, health and information. However, the future growth of e-commerce in Brazil may be limited by social and economic factors such as income level, income distribution and education.

INTRODUCTION

The diffusion of e-commerce in less developed countries has been an uneven process affecting different economic activities in different ways. Some sectors seem to benefit much more than others from the development of new communications technologies. Also, some regions and countries are more receptive to ICT innovations than others as statistics correlating GDP and telecommunications infrastructure show¹.

Considering the social and economic impact of new telecommunication technologies, it is important to properly identify of driving forces behind e-commerce diffusion. This paper analyses the diffusion of e-commerce in Brazil based on some hypotheses about driving forces and barriers. It looks at global and national environment and policy forces and identifies which factors are drivers or enablers and which are barriers or inhibitors to B2B and B2C e-commerce adoption. These include a description of national environment for e-commerce diffusion, including macroeconomic policy changes, population and demographics, economy and wealth, human resources, industry structure and infrastructure. Secondly, it focuses on national policies for IT and e-commerce, putting the diffusion process in perspective. Thirdly, it draws some conclusions about the diffusion process that could be relevant to other developing countries.

The paper raises some hypotheses on how different environment and government policies shape e-commerce diffusion. As far as drivers are concerned, three major hypotheses are raised. First is the hypothesis that the use of the Internet as a business tool is potentially higher in information related sectors like finance, communications, information services, and other services that can be easily digitized. Second, that market power of large manufacturing and retailing firms commanding a network of suppliers may be more important as a driving force for e-commerce than globalization. The power to impose new business practices to suppliers may push smaller firms into B2B e-commerce, whether leading firms are oriented toward the global market or not. A third hypothesis concerns the role of government policy in e-commerce diffusion. It has been argued² that e-commerce diffusion depends on an appropriate legal framework concerning privacy, intellectual property, and security. The hypothesis here is that the role of government as a leading e-commerce user and facilitator may be much more relevant to inducing private agents to follow suit than its role in introducing and enforcing specific regulations.

As for inhibitors of e-commerce diffusion, both B2B and B2C, our hypothesis is that in the case of Brazil, income level and income distribution are the major barriers. Educational levels and telecom infrastructure costs and availability also play a negative but secondary role. Low-income levels affect not only B2C but also B2B. In countries like Brazil where unskilled labor is a relatively less expensive input than capital, firms may be more reluctant to invest in automation. IT equipment and software may also be harder to adopt for smaller firms that lack qualified people to apply new technologies. Consequently, a secondary

¹ See Mansell and Wehn (1998) figure 2.4 to 2.6 pages 28-29.

 $^{^2}$ Multilateral institutions like OECD usually reinforce this argument in different policy papers.

hypothesis is that in developing countries e-commerce diffusion is a more selective process than in advanced countries. E-commerce probably will be limited to more competitive and advanced sectors within Brazilian economy and would barely affect traditional industrial sectors in the near future.

The Brazilian case has some idiosyncrasies, but may be very relevant to other developing countries. As a large and populated country with relatively advanced IT capabilities, Brazil can pioneer some e-commerce solutions directed to less developed environments.

NATIONAL ENVIRONMENT

Macroeconomic Policy Changes

Since the beginning of the 1990s, Brazilian markets for goods and services have become increasingly liberalized. Tariff and non-tariff barriers have been lowered. Inflation rates declined from three digits in 1993 to one digit as a result of the Plan Real, a macroeconomic stabilization plan. Restrictions on foreign direct investment that existed in sectors like banking, public services and mining have been relaxed. In most policy issues, Brazil followed international trends towards liberalization. The results of a decade of economic liberalization may be summarized as:

- Sharp increase in foreign investment alongside a process of industrial restructuring and concentration.
- Import liberalization and reduction of both tariff and non-tariff barriers.
- Regulatory changes aimed at introducing competition in services and creating a more liberal environment for investment, funds transfer and price setting.
- Adherence to major international agreements on trade (WTO) and intellectual propriety (TRIPS).
- Strengthening of the Mercosur trade zone, thus creating a sub-regional free market linking Argentina, Brazil, Paraguay and Uruguay.

The impact of these structural changes on the development of e-commerce has been mostly positive. The globalization of most economic sectors increased the demand for telecommunications services, especially data communications. Brazil's manufacturing industry became more integrated into international value chains. Within Mercosur, Brazil reinforced its role as regional production base for global manufacturing and service firms, which are usually information intensive.

Population and Demographics

With 170 million inhabitants in 2001, Brazil is the fifth most populated country in the world. Despite its large territory (8 million square kilometers), more than 80% of its population is living in cities, 10 of which have more than 1 million inhabitants. The population is predominantly young. 30% of the population is under 15 years old and 49 % of Brazilians are age 24 or younger (IBGE). These factors may play a positive role in the diffusion of the Internet for two reasons. First, the diffusion of the Internet is easier in

urban rather than rural areas where a dispersed population makes infrastructure building less viable. Second, younger people's ability to acquire new skills is greater, if an adequate supply of equipment and training are provided.

In comparative terms, Brazil is second to the U.S. in population in the Americas. Demographics indicators, such as urban population and age groups are more or less on par with Latin American averages, as Table 1 shows.

TABLE 1 Demographics Indicators in the Americas

<u>U</u>		Urban population (% of		
Demographics	Population	total)	% over age 65	% under age 15
	2000^{a}	2000^{b}	1999 ^c	1999 ^c
Argentina	37,032,000	89.90	9.58	27.91
Brazil	170,115,008	81.30	4.89	29.56
Canada	30,750,100	77.10	12.54	19.46
Chile	15,211,300	85.70	6.99	28.56
México	98,881,000	74.40	4.50	33.93
United States	275,129,984	77.20	11.85	21.20
Venezuela	24,170,000	86.90	4.31	34.42
Latin America ^d	345,409,308	80.83	5.34	30.92
$OECD^e$	1,115,304,202	77.55	12.63	20.43

^aSource: International Telecommunication Union, <u>Yearbook of Statistics 1991-2000</u>. Geneva: International Telecommunication Union, 2001. Geneva: International Telecommunication Union, January 2002. The data for population are mid-year estimates.

Economy and Wealth

GDP and **Economic** Growth

Brazil ranks among the top 20 largest economies in the world in GDP terms. Per capita income is very much influenced by exchange rates and after the 1999 devaluation Brazilian per capita income fell from US\$5,000 to \$3,500 a year, a figure that places the country below the Latin American average. In the last two decades, the economy has been growing at a relatively slow pace compared to its historical growth rates, which at one time were among the highest in the world.

Since the early nineties, inflation control has been the highest priority in economic policy. At least four classes of anti-inflationary policies were adopted. One was simply to keep a relatively stable and controlled exchange rate. This policy, however, was not flexible enough to avoid an overvaluation of the Brazilian currency and ended in 1999 when currency market liberalization was forced by "speculative attacks" against the overvalued

bSource: World Bank Group, WDI Data Query located at http://www.devdata.worldbank.org/data-query/. WDI definition: urban population is the midyear population of areas defined as urban in each country and reported to the United Nations. It is measured as a percentage of the total population.

^cSource: World Bank, World Development Indicators CD-ROM 2001.

^dLatin America here consists of the following countries: Argentina, Brazil, Chile, Mexico and Venezuela.

^eOECD here denotes the OECD member countries, excluding Luxembourg, Slovakia and Iceland.

Real. A more strict policy anchoring the local currency to the dollar was adopted by Argentina and proved to be disastrous as recent events in that country show.

The second class of policy was a tight monetary control based on very high interest rates and cuts in government expenses. This IMF-backed policy had to be reinforced after the real devaluation in 1999 in order to curb new inflation threats. The third class of policy was the widespread reduction of import tariffs. This policy was intended to increase the supply of goods and boost competition in the domestic market. However, it had little impact on export growth since it was essentially unilateral openness. The last policy was privatization, aiming at attracting foreign investment and changing the role of government involvement in the economy.

These policies bore fruit as far as inflation control is concerned, but were detrimental to economic growth. From 1995 to 2000 average GDP growth was 2% a year, a level that was insufficient to promote employment growth. Apparently, the Brazilian economy is caught in a trade-off between economic growth and inflation control. Foreign debt increased substantially after the Plan Real, due to high interest rates and current account deficits but has stabilized in the last three years. Total public debt (internal and foreign) represents 57% of GDP. The Balance of Services explains most of current account deficit. Part of the necessary funds to close the gap was obtained by foreign direct investment. However, the peak of FDI has already passed, since privatization programs, which attracted foreign investors, are mostly over. The balance must be obtained as loans in the international money market. In July 2002, the country was facing another crisis in foreign accounts, which resulted in currency devaluation. These factors may have a negative impact on EC diffusion, since slow growth reduces investments in telecommunication and IT infrastructure.

Openness to foreign trade and investment

One of the remarkable phenomena in the Brazilian economy in the last 10 years has been the rapid opening for international trade and foreign investment. In the late 1980s, foreign trade represented only 5% of GNP. The percentage almost doubled in 2000 to 9.4%. Although this percentage is not large in world terms, it is typical of large countries where most business is done locally. Brazil is now at a similar level of openness to foreign trade as the U.S.

As a large continental country, Brazil has historically been one of the most self-sufficient economies in the world, but has become much more integrated with the world economy in the 1990s. However, most of the foreign trade increase was on the import side. Between 1990-2000, Brazilian exports rose from US\$ 31.4 billion to US\$ 55.1 billion, an increase of 75%. During the same period, imports almost tripled, growing from US\$ 20.7 billions in 1990 to US\$ 55.8 in 2000. This asymmetry in the rate of growth led to an inversion in the sign of the trade balance: A surplus of US\$ 10.7 billion in 1990 became a deficit from the mid 1990s as Table 2 below shows. Brazilian foreign accounts are unbalanced mainly because of a structural deficit in services such as intellectual property (royalties, technical assistance), transport and insurance services, profits, and interest rate remittance. As a consequence, there has been an increasing foreign debt. High foreign debt can be

detrimental to e-commerce diffusion because it can restrain local capacity to import IT equipment, services and components. During debt crises, there is shortage of import credits and a decline in the value of the Real, which make imported equipment more expensive.

TABLE 2Brazilian Foreign Account

	-				
	1996	1997	1998	1999	2000
Balance of Trade – FOB	-5,599	-6,748	-6,604	-1,260	-698
Balance of Services (net)	-20,443	-26,278	-28,800	-25,829	-25,706
Registered Foreign Debt	-	167,760	220,350	219,196	215,415
Trade as percent of GDP	6.5%	7.0%	6.9%	9.2%	9.4%

Source: Boletim do Banco Central do Brasil, Abril 2001 and Ministério do Desenvolvimento (www.mdic.gov.br/indicadores)

Income distribution and unemployment

Brazil ranks third in the Americas in GDP value. However, in per capita terms, Brazil falls behind the five wealthiest countries in Latin America. Also, it has one of the worst income distributions in the Americas. As Table 3 shows, while the share of income of the richest 20% of the population was 63.8%, the poorest 20% earned only 2.5%.

TABLE 3Wealth Indicators in the Americas

*** ***********************************	010 111 1110 1 11110110110			
Wealth	GDP in billions US\$ 2000°	GDP per capita 2000 ^a	Share of income or consumption, richest 20% 1987-1998 ^b	Share of income or consumption, poorest 20% 1987-1998 ^b
Argentina	\$285.04	\$7,697.26	N/A	N/A
Brazil	\$595.46	\$3,500.33	63.80	2.50
Canada	\$708.73	\$23,048.11	39.30	7.50
Chile	\$70.54	\$4,637.67	61.00	3.50
México	\$574.24	\$5,807.43	58.20	3.60
United States	\$9,962.65	\$36,210.70	46.40	5.20
Venezuela	\$120.48	\$4,984.85	53.10	3.70
Latin America ^c	\$1,645.78	\$4,764.72	59.03	3.33
$OECD^d$	\$25,461.49	\$22,829.19	40.19	7.71

^aSource: International Telecommunication Union, <u>Yearbook of Statistics 1991-2000</u>. Geneva: International Telecommunication Union, 2001

Comparative data provided by The Brazilian Institute of Geography and Statistics (IBGE) shows that while it is true that the poor became less poor in the last decade by increasing their absolute income, it is also true that the income distribution did not change much. From the comparison from 1992 to 1999, we conclude that:

^bSource: United Nations Development Programme, <u>Human Development Report 2000</u>. New York & Oxford: Oxford University Press, pp. 169-172. Dates for the data vary by country from 1987 to 1998.

^cLatin America here consists of the following countries: Argentina, Brazil, Chile, Mexico and Venezuela.

^dOECD here denotes the OECD member countries, excluding Luxembourg, Slovakia and Iceland.

- The bottom 40% of workers increased their income by 40%, while the top 1% increased their income by 38%.
- More than 5% of the population jumped above the poverty line.
- The Gini coefficient remained stable, declining slightly from 0.571 to 0.567 (the closer to one, the more unequal the income distribution).
- The top 1% of workers kept their 13.1% share of total salaries while bottom 40% workers also kept their 14% total share.

The process of development in the 1990s created some opportunities for real salary increases but changing income distribution is a much harder task. The job market is increasingly demanding a highly qualified workforce for the most dynamic sectors of the economy. Since qualified people are in short supply in fast growing industries, the salary gap between the richest and the poorer workers remains wide open.

Despite an unbalanced income distribution and regional economic and social differences, Brazil has relatively large middle and upper class market segments, which encourage private investment in e-commerce. Per capita income of the top 20% of population (about 34 million people) is about US\$15,000 a year, equivalent to many European countries. At the same time, the bottom 40% of population survives with an average per capita income of US\$1,000. For its unbalanced income distribution, Brazil was nicknamed "Bel-India" by some economists for combining an upper class with a consumption level similar to Belgium and a lower class similar to India. The consequences of this wealth distribution pattern on EC diffusion are quite clear. EC growth might be quite fast up to a certain point and then stagnate.

Education is usually distinguished as a tool for improving income distribution. The higher the qualification of the worker the higher the salary. By all indicators, Brazil is increasing school enrollment and literacy. However, the impacts of educational levels on income distribution are not yet visible, at least in the short run.

The unemployment rate (7.1%) is below the Latin America average. However, as in other parts of the continent, there is a higher percentage of the population working informally without social security coverage.

TABLE 4 Unemployment, Inflation and Economic Growth in the Americas

		Inflation,	
Economy	Unemployment Rate	GDP Deflator (annual %)	Average GDP growth,
	2000^{a}	$2000^{\rm b}$	1995-2000 ^b
Argentina	15.00	1.13	1.79
Brazil	7.10	7.08	2.61
Canada	6.80	3.59	3.46
Chile	8.30	4.13	5.60
México	1.60	10.73	3.57
United States	4.00	2.05	4.01
Venezuela	14.00	26.84	1.19
Latin America ^c	9.20	9.98	2.95
OECD ^d	6.56	4.79	3.43

^aSource: International Labour Organization, LABORSTA (http://www.laborsta.ilo.org), Table 3A.

Potential e-commerce participants

Brazilian industries are marked by heterogeneous and diversified networks consisting of millions of firms. The potential for e-commerce varies according to size of firm, industry sector, region, and business culture. Most firms are already linked to the Internet but only a small minority of firms (from 5% to 6%) is in an advanced transactional e-business stage.³

Large firms, both local and multinational, are intensive users of B2B applications and are important drivers of e-commerce diffusion among smaller upstream suppliers. In hierarchical business networks, such as in the automobile and electronics industries, where a few assemblers control the value chain, use of e-commerce has already become a necessary condition for participants. Leaders use their inherent bargaining power to induce their suppliers to adopt organizational tools compatible with their own information design, thus establishing standards and guidelines for expanding on-line business.

The potential for further diffusion still exists in small and micro firms. In the last decade, 2.7 million micro enterprises (with less than 10 employees each) have been established, according to the Support Service for Micro and Small Firms (SEBRAE). The micro and small firms are becoming increasingly important as the new information technology paradigm diffuses. In principle, medium and large firms are more equipped and have more qualified human resources than small firms. However, firm size does not necessarily define e-commerce adoption rates. In many cases, small firms can be more flexible to introduce organization changes than larger bureaucratic firms. In one survey (Tigre, 2001), Tigre and colleagues show that small firms can operate more easily in market niches which have high innovation rates due to risk taking behavior and better motivation

bSource: World Bank Group, WDI Data Query located at http://www.devdata.worldbank.org/data-query/. WDI definition: Inflation as measured by the annual growth rate of the GDP implicit deflator. GDP implicit deflator measures the average annual rate of price change in the economy as a whole. Annual percentage growth rate of GDP at market prices based on constant local currency. Aggregates are based on constant 1995 U.S. dollars.

^cLatin America here consists of the following countries: Argentina, Brazil, Chile, Mexico and Venezuela.

^dOECD here denotes the OECD member countries, excluding Luxembourg, Slovakia and Iceland.

³ Tigre (2001).

of the workforce. One of the main findings concerning firm size is that the Internet opens opportunities to small firms to overcome barriers to market entry and access to information. The surveyed micro and small firms use the web more intensely in relative terms than larger firms in activities like procurement, access to information, technical assistance and customer service. The Internet facilitates communications with suppliers and clients thus favoring better supply chain integration, more value added and operations that are more efficient.

Of course, their use of e-commerce is small-scale relative to larger firms. SMEs are very heterogeneous in terms of capabilities, financial resources and access to IT. Government programs such as the Internet Society aim at diffusing Internet access in small retailing business widely. The program coordinators believe that post office facilities, grocery stores, news agents, lottery and other small business could become Internet intermediaries to small business and low-income population. Instead of shopping on-line directly, a customer can order available-to-order goods through a next-door shop. This strategy may be important for e-commerce diffusion in developing countries in general.

As far as B2C is concerned, the potential Brazilian market is now limited to about 30 million people who can afford IT and telecommunication expenses. The majority of the population lacks the resources and probably the required education to practice ecommerce. However, there are some community programs aimed at facilitating access to e-commerce in poor areas. For example, an initiative in the periphery of Rio de Janeiro is directed to encourage local people to use a community computer to buy construction materials. With the assistance of volunteers, local buyers could save money by searching for best offers and sharing transportation costs.

Human Resources

By all indicators, education levels increased substantially in the last decade. These include literacy and enrollment in all educational levels. By the turn of the century, primary education was almost universalized (95.7%) and 78.5% of the population from 15-17 years old was enrolled in secondary education versus less than 60% in 1992. Secondary education is a usually considered by industry experts as a necessary condition for advanced IT uses.

TABLE 5Education Indicators

Indicator	Source	Unit	1992	1998	1999
Adult literacy	UNDP Human Development Report (2000) for 1998 and IBGE (2001) for 1992 and 1999.	% of over age 15 can read and write	82.8	84.50	86.7
Functional illiteracy	IBGE (2001)	% of people with less than 4 years of study	36.9	-	29.4
Primary education	IBGE (2001)	% of enrollment of children from 7 to 14 years of age	86.6	-	95.7
Secondary education	WDI (2000), for 1998 and IBGE (2001) for 1992 and 1999.	% of enrollment from 15 to 17 years of age	59.7	61.5	78.5
Adult Education	IBGE (2001)	% of enrollment of people from 20 to 24 years of age	16.9	-	25.5
Tertiary education	WDI (2000)	% of Tertiary enrollment of age group.	-	15	-

In comparative terms, Brazil presents an absolute high availability of software professionals. There are 680 undergraduate courses in information technology-related subjects. In 1998, about 22,000 students got their degrees, while nearly 200,000 students were registered. It can be noted that other students from areas like applied sciences and mathematics eventually become IT professionals as well.

TABLE 6Graduates and Enrollment in IT University-level Courses

Area	Courses	Graduates	Enrollment
	1998	1997	1998
Data Processing	180	7,388	43,701
Computer Sciences	159	8,367	74,567
Social Communications	152	2,701	37,738
Information Systems	53	836	13,078
Industrial Design	40	1,242	9,811
System Analysis	35	582	9,829
Others*	61	1,167	9,168
Total	680	22,283	197,892

Source: Ministry of Education, Sinopse Estatística do Ensino Superior, 1998

*Areas related to IT

Despite recent growth, the supply of qualified IT workforce may not match future demand. According to IDC⁴, by 2004 there will be 403,000 job vacancies in Brazil in the area of networks. It estimates that only 155,000 people would be qualified to fill this demand, widening the gap between supply and demand for well-trained professionals. However, the shortage of qualified people was not mentioned as an important barrier for e-commerce diffusion in other studies mentioned here. Perhaps it will become a major problem only if the pace of e-commerce diffusion speeds up.

⁴ Extracted from UFRJ on-line (www.ufrj.br), April 2001.

Industry Structure

Firm size and industry concentration

The structure of Brazilian business is shown below. But while micro and small firms (MSFs) represent 99% of all business, they provide only 35% of total employment. Large firms, in contrast employ 45% of total registered workforce. However, taking into account that informal workers, who represent more than one half of total Brazilian workers, are mostly in small firms the balance could, in fact, be quite different.

TABLE 7 Distribution of Business by Size of firms

Distribution of Business by Size of firms	Unit	1999
Small: under 100 employees	%	99.27
Medium: 100-499 employees	%	0.59
Large: 500 or more employees	%	0.14

Source: IBGE website

From the data collected from different reports on diffusion of e-commerce in individual sectors⁵, we propose the following ranking as far as potential e-commerce participants is concerned.

TABLE 8Top E-Commerce Users in Brazil

Sector	How e-commerce is used:
Finance	Transactions, investments, B2C
Government services	Information services, tax collection, elections, procurement
Retailing	Procurement, logistics, B2C
Automobile industry	Supply chain management, components trade, on-line sales
Transport and Distribution	Auctions for idle capacity, transport supply sites
Construction	Bidding, subcontracting, material trade
Pharmaceutical	Supply chain and distribution to retailers
Electronics	Supply chain management, distribution, B2C
Agriculture and Food	B2B Marketplace, Equipment and parts supply
Petrochemicals	Sales of intermediary goods, plastics and chemical
	products
Office equipment, parts and stationary	Supply of stationary, computer supplies, spare parts

Table 9 presents the sectorial data collected in Tigre (2001). It shows that the use of the Internet as a business tool is more common in information-related sectors. Transactions realized within and among business areas like finance, communications, information services, and other services can be easily digitized. Consequently, they are naturally high potential users. Business sectors where the diffusion of e-commerce is relatively large also have in common the fact that they are transaction-intensive sectors. They rely on frequent data exchange and need on-line coordination among various agents within the value chain.

11

⁵ Tigre, 2001 and FIESP, 2000

TABLE 9Internet Usage Pattern According To Business Sector

Internet Osage 1 atte		,	0 2 0.51			
Usage	Retailing	Manufacturing	Information Services	Finance	Others	Total
Access to information	94.8	96.9	96.1	85.7	95.8	95.9
Electronic mail	94.8	96.9	94.1	85.7	93.0	94.5
Procurement	37.9	23.1	25.5	21.4	39.4	31.4
Intranet	34.5	30.8	45.1	64.3	38.0	41.4
Extranet	10.3	18.5	5.9	28.6	11.3	13.2
On-line sales	29.3	18.5	33.3	21.4	26.8	27.7
Information services	32.8	23.1	56.9	71.4	40.8	38.6
Technical services	20.7	4.6	21.6	-	21.1	14.1
Advertising	43.1	36.9	39.2	35.7	40.8	37.7
Average	44.2	38.8	46.4	46.0	45.2	43.8

Source: Tigre (2001)

In Brazil, the financial sector has been the largest IT and e-commerce user. While intersector comparative information is not available, there is plenty of evidence about the leading role of the banking sector in both IT and e-commerce development. Since the days of the Information Policy during the 1980s, some of the largest Brazilian banks – like Itaú, Bradesco and Banco do Brasil – have developed internal technological capabilities in service automation. Speeding up financial information and transaction flows usually paidoff in a scenario characterized by very high inflation. These capabilities were further used to pioneer Internet banking. Today, more than two-thirds of all banking transactions done in Brazil (67.1%) are labeled as "electronic", according to the national banking association⁶. This includes the Internet, automatic teller machines and call centers. More than 5 million clients use Internet banking. In 2002, the Central Bank introduced a new "Brazilian System of Payments", which permits nationwide on-line funds transfer among banks, business and consumers. It will gradually substitute for checks in business-tobusiness (B2B) and business-to-consumer (B2C) transactions. The Central Bank estimates that 14 million transactions a day, involving US\$7 billion, will migrate to the new system. The main advantages of the system are security and immediate transfer of funds from one account to the other.

Recently, major banks have been adopting e-commerce, taking advantage of their existing infrastructure. They are diversifying the service range available in their sites to include both B2C and B2B. In addition, banks are taking over many cash-starved dot coms. The financial sector in Brazil invested in 136 sites and 34 Internet services providers (ISPs) during the last two years. These represented more than 40% of all transactions in the local

⁶ FEBRABAN. O Globo, 9th April 2001 page 15.

venture capital market. The banks are reputed to be more solid and trustworthy than startup Internet firms and are following a strategy designed to use these advantages to obtain a competitive edge in e-commerce.

Among business sectors, financial institutions present the highest percentage of advanced forms of usage. About 43% of the surveyed financial institutions may be classified as in a transactional stage. In comparison to other sectors, the financial sector is a leader in intranet, extranet, and information services.

The federal government is the second largest e-commerce user. In all probability, the value of procurement through reverse auctions and tax collection through the Internet confer a leading position to the state in the Brazilian e-commerce ranking. Also, information provided through the Internet about government activities, legislation, statistics, and services are now widely available on official sites. Government involvement in e-commerce will be further explored in the policy section.

Retailing is probably the third larger user. While B2C is still at an early stage of development, major supermarkets and stores⁷ are already heavy users of e-commerce to manage their procurement and logistic operations. Manufacturing is next, especially in the automobile, electronics and petrochemical industries. Transport and distribution are also intensive users, since they play a key role as supply chain integrators. Agriculture is rapidly increasing e-commerce operations, mainly in commodities markets. Finally, non-hierarchical networks, dealing with standardized products such as construction materials, office equipment, parts and stationary suppliers, are discovering the Web as an important marketplace.

TABLE 10Sector Distribution of GDP

Sector	1995 (%)
Agriculture, hunting, forestry & fishing (%)	13.63
Mining and quarrying (%)	1.17
Manufacturing (%)	24.72
Electricity, gas and water (%)	2.83
Construction (%)	9.01
Wholesale and retail trade and restaurants and hotels (%)	7.59
Transport, storage and communication (%)	6.13
Financing, insurance, real estate and business services (%)	20.09
Community, social and personal services (%)	20.82

Source: U.N. National Accounts, 1999 U.N. National Accounts, 1999

13

⁷ such as Pão de Açucar, Carrefour, and Lojas Americanas

Importance of Foreign MNCs

The role of FDI in the Brazilian economy rose dramatically during the 1990s. Kupfer (2001) has attempted to measure the changing role of MNCs in the Brazilian industry. He analyzed the top 365 Brazilian industrial firms and concluded that foreign MNCs participation increased from 14.8% to 36.4% from 1991 to 1999. Part of the explanation for these effects lies in the privatization of state-owned companies. Also, the opening of the Brazilian market to imports in a context of an overvalued local currency exposed locally owned firms to stiffer competition. As a consequence, many important local groups were taken over by foreign counterparts.

New foreign investments occurred largely in specific sectors like automobiles and public services. Despite the slowdown in investment estimates for 2001, Brazil continued to be the primary focus for Internet and other new economy investment in Latin America, because of its lead in e-commerce. In 2002, however, FDI was sharply reduced due to international investors' fears about emerging markets performance in a period characterized by an unstable international environment.

The role of MNCs in e-commerce diffusion is related not only to global competitive pressures but also to their management practices worldwide. In Brazil, global competitive pressure may play less of a role than in other countries like Singapore and Taiwan, where firms are more interlinked with the world market. However, despite the lack of external competitive pressures, the opportunities offered by B2B e-commerce to reduce costs and improve supply chain management may be a strong incentive to adopt. Some MNCs in the fields of durable consumer goods are pioneers and leading users of e-commerce in Brazil. On the other hand, MNCs operating in service fields like retailing and banking seem to be less advanced e-commerce users than locally-owned leaders.

Infrastructure

Telecommunications infrastructure

Teledensity has been increasing very rapidly since 1995 (Table 11). In per capita terms, Brazil is now on level with the Latin American average, both in fixed line and cellular phones. Teledensity in late 2000 was about 23 fixed lines per 100 people, 15.5% of which were connected with the Internet. The quality of services has improved substantially and in most areas connections no longer drop with noticeable frequency as before. Anatel constantly monitors quality indicators and world class standards are now required for issuing new operational concessions to existing telephone operators.

TABLE 11 Teledensity Evolution in Brazil

Teledensity per 1,000 people	1995	1996	1997	1998	1999	2000
Main phone lines	85.12	95.69	106.57	120.51	148.7	232*
Cellular subscribers	8.25	15.82	27.52	46.8	89.5	141*

Source: ITU Yearbook of Statistics, 2000

^{*}Source: ANATEL; Web site at http://www.anatel.gov.br/estatisticas. 2002.

The experience of most developed countries shows that price and availability of telecommunications infrastructure are clearly associated with competition and market access. Along with new regulation, technology change plays a key role in shaping new market structure in telecommunications services. Technology convergence in different media and forms of transmission opens new opportunities both for competition and market concentration. On the one hand, it boosts competition by providing alternatives to data, voice and image transmission at higher speed and better performance. By choosing among cable, radio, satellite connections, eventually provided by different service firms, users can bargain for better prices and services. Technology and regulatory reform eliminated most natural monopolies, lifting entry barriers and enabling multiple operators to supply these services.

Liberalization of public switched telecommunication markets in Brazil has enabled new players to enter the market and also encouraged the development of new ways of buying and selling capacity. New carriers are bypassing the established method of connecting calls between telecommunication carriers in major cities. There are now new alternatives for trading transmission capacity and alternative rates for leasing a circuit have became available. These include discount prices from the telecommunications carriers, which face competition from new market entrants, lower market prices for leased capacity, and wholesale prices from infrastructure providers with excess capacity.

In Brazil, competition is already present in cellular phones, international calls, and value-added services. However, in fixed mainlines and long distance data communications, competition has proven slower to take off. The reasons for that are both technical and economic. A natural monopoly still seems to work in basic infrastructure services, and sunk costs provide overwhelming competitive advantages to existing firms. Fixed commuted telecommunications services fall into this category in most countries in the world. In Brazil, the state-owned telecommunication holding company (TELEBRAS) was split into three different regional companies and one long-distance. These firms now hold considerable vintage capital. Their access to the final user is a key competitive advantage not easy to replicate by new entrants.

The newly privatized operators benefited from this "natural monopoly", granted by the acquisition of existing network capacity. The price paid for acquiring the PTOs in privatization bids were, in some cases, below the reproduction cost – that which would be necessary to duplicate the capacity—since the risks, either technical, political and/or financial of investing in emerging markets were considered high. Consequently, new competitors face entry barriers, since they have to pay a high, monopoly cost to interconnect to local backbones.

The so-called *mirror firms*—authorized telecommunication public service providers - have pursued a new technology strategy combining fixed and wireless through wireless local loop (WLL). It is cheaper to install, since it is based on radio and does not require a cable network, and is considered a short cut alternative to wired networks. However, the WLL technology has the disadvantage of not being as mobile as cellular phones. Also, it is not suitable for the Internet, a fact that severely limits its market growth potential. Brazil now

has the largest WLL installed base in the world (600,000 terminals) but unless further technological efforts to solve interference and other technical problems are undertaken by equipment and systems suppliers, this technology could be pushed to small market niches such as remote villages.

Cable TV is another technology that has not yet become a major Internet infrastructure. Unlike Argentina, Canada and the U.S. where cable TV is widespread in urban residences, Brazil has only 13.7 subscribers per 1,000 people. Globo, the largest Brazilian communication group provides Internet services through cable TV in a few large cities and its competitors in the paid-TV market use satellite and other wireless transmission systems.

TABLE 12 Telecommunication Indicators

Telecommunications Infrastructure	Telecomm Investment as % of GDP, 2000 ^a	Main phone lines per 1,000 population, 2000 ^a	Cell phone subscribers per 1,000 population 2000 ^a	% Digital phone lines, 2000 ^a	CATV subscribers per 1,000 population 2000 ^a
Argentina	.67	213.17	163.37	100.00	159.32
Brazil	1.49	181.80	136.31	92.50	13.70
Canada	.57	676.51	284.60	99.70	259.41
Chile	1.56	221.22	223.62	100.00	45.20
México	.89	124.72	142.33	99.98	23.11
United States	.29	699.74	397.91	91.60	252.13
Venezuela	.24	107.80	217.46	80.00	40.21
Latin America ^b	1.05	165.38	150.46	95.02	35.25
OECD ^c	.73	524.53	457.27	94.82	145.37

^aSource: International Telecommunication Union, <u>Yearbook of Statistics 1991-2000</u>. Geneva: International Telecommunication Union, 2001

In some segments of the telecommunications market, especially fixed lines and cross national backbones, market mechanisms alone are not sufficient to grant widespread access to the network, since a large part of the population lack the required income level to subscribe to individual telephone services. The universalization program sponsored by Agência Nacional del Telecomunicações (ANATEL) is designed to increase public phone facilities in low-income areas and expand the services to small and remote communities. The universalization obligations for incumbent carriers include areas where telecom operators usually do not provide full access because of the small size of the market. Also, the telecommunications operators are required to contribute 1% of their total revenues to a universalization fund aimed at providing services to those excluded from the market.

Ongoing international traffic reflects different levels of regional and international economic integration. While in Mexico, a country characterized by an intense trade and immigration flow with the U.S., telephone subscribers spend an average of 153 minutes in international calls, in Brazil only 21 minutes a year is spent per subscriber. This occurs despite tariff differences, which are 40% lower in Brazil. However, a more careful

^bLatin America here consists of the following countries: Argentina, Brazil, Chile, Mexico and Venezuela.

^cOECD here denotes the OECD member countries, excluding Luxembourg, Slovakia and Iceland.

analysis is required, since other costs (like fixed telephone fees) may alter the real costs. In most countries, tariffs have increased substantially after privatization, along with quality improvements. Tariffs vary widely across Latin America, reflecting different levels of competition and regulations.

Mobile telephone use is expanding rapidly in all of Latin America, since it is relatively inexpensive and accessible. In Chile, Mexico and Venezuela there are already more mobile phones than fixed telephony mainlines, a tendency that will probably be followed by other countries. Moreover, in an increasing number of Latin American countries, digital mobile services provide opportunities for more advanced Internet-based services.

It can be noted in Table 13 that most households in Latin America have television sets. There are almost 300 TV sets per 1,000 people, representing the main communication means in Latin America. This fact must be taken into account when introducing new interactive technologies such as digital TV. In most Latin American countries, TV sets, rather than computers, could be the most important vehicle for Internet diffusion. With a relatively small investment, existing TV sets could be transformed into Internet terminals.

TABLE 13Telephone Infrastructure and Access Costs (2000)

Telephone iiii astructu							
Indicator/Country	Argentina	Brazil	Chile	México	Perú	Venezuela	Latin
							América
Telephone mainlines							
Dor 1 000 manla	212	182	221	125	61	108	148
- Per 1,000 people	213	_		_	64		_
- In largest city (per	247	165	318	142	132	329	175
1,000 people)							
- Revenue per line (\$)	1,267	823	754	1,065	850	1,385	889
- Cost of local call	0.09	0.03	0.12	0.14	0.06	0.10	0.06
(\$ per 3 minutes)							
Mobile phones (per 1,000	163	136	222	142	48	217	123
people)							
International							
telecommunications							
	56	21	64	153	68	72	106
- Outgoing traffic	30	21	04	133	08	12	100
(minutes per subscriber)	• • •	4.00	• • •	• • •	• 40		• • •
- Cost of call to U.S. (\$	2.80	1.80	2.90	3.01	2.40	5.20	3.20
per 3 minutes)							
Television sets (per 1,000	293	343	242	283	148	185	269
people)							

Sources: ITU (2001). World Telecommunication Indicators. Geneva: ITU, March.

Information Technology Infrastructure

Since the early 1970s, Brazil has developed capabilities both in production and use of information technologies. Prior to liberalization in the early 1990s, Brazil had a larger and

_

⁸ A set top box costs today about US\$300 but alternative innovative solutions could eventually reduce prices to a fraction if the market demand is high enough.

more technologically advanced domestic IT industry, which produced a wide range of systems, peripherals and even components. Despite setbacks, the country is one of the few developing countries to have extensive technological capabilities in both hardware and software design and manufacturing.

Mexico and Brazil are the only Latin American countries with substantial IT hardware production. However, Brazil produces mostly for the internal market and is also a heavy importer, while Mexico is a large exporter. In 2001, the current account deficit in the electronic balance of payment reached US\$8.5 billion. As Table 14 shows, IT spending represented 2.38% of total GDP, a level well above the Latin American average, and inferior only to the U.S. and Canada in the Americas.

TABLE 14IT Infrastructure in the Americas

IT Infrastructure	IT as % of GDP, 2000 ^a	PCs per 1,000 population 2000 ^b	IT Hardware Production, US\$M 2000 ^c	IT Hardware Exports, US\$M 1999 ^c
Argentina	1.29	51.31	N/A	N/A
Brazil	2.38	44.09	\$9,083.78	\$321.00
Canada	3.83	390.24	\$3,361.73	\$4,496.64
Chile	1.67	166.80	N/A	N/A
México	1.00	50.57	\$10,281.00	$$6,950.00^{f}$
United States	4.56	585.18	\$88,488.62	\$38,488.00
Venezuela	1.30	45.51	\$254.02	$$2.00^{f}$
Latin America ^d	1.60	52.22	\$19,618.79	\$7,273.00
OECD ^e	3.60	312.01	\$231,341.80	\$182,730.10

^aSource: International Data Corporation, <u>The 2000 IDC Worldwide Black Book</u>, IT is defined as "the revenue paid to vendors (including channel mark-ups) for systems, software, and/or services.".

With an IT market of about US\$20 billion, Brazil offers opportunities for start-ups to target niche markets at home, as government programs actively support local entrepreneurs through incubator programs. As Dedrick et al. (2001) put it, the fact that Brazil had a domestically owned computer industry before liberalization meant that many professionals gained experience in managing their own companies.

Internet Infrastructure

In Brazil, Internet infrastructure is very heterogeneous. Usually subscribers in more developed regions have options between various Internet packages and it is normally possible for users to establish a good dial-up connection to a local ISP. Few urban areas have higher bandwidth solutions such as DSL (digital subscriber line) and cable modem access. In "teleports" and newly developed business centers, customers can tailor services to meet different demands for speed, service, security, quality and cost. A competitive and sophisticated Web design market exists, incorporating the latest development technology. Also, major international suppliers of software and e-commerce service such as ASP and

^bSource: International Telecommunication Union, <u>Yearbook of Statistics 1991-2000</u>. Geneva: International Telecommunication Union, 2001.

^cSource: Reed Electronics Research, The Yearbook of World Electronics Data, 2000. Surrey, UK: Reed Electronics Research, 2000.

^dLatin America here consists of the following countries: Argentina, Brazil, Chile, Mexico and Venezuela.

^eOECD here denotes the OECD member countries, excluding Luxembourg, Slovakia and Iceland.

f1998 data

ICP services, are already present in larger cities. Table 15 compares Internet indicators in different countries in the Americas.

TABLE 15Internet Infrastructure in the Americas

	Internet hosts per	Internet users per	Access cost, 30	Access cost, 30
Internet	1,000 population	1,000 population	hours, peak, US\$	hours, off-peak,
Infrastructure	2000^{a}	2000^{a}	2001 ^b	US\$
				2001 ^b
Argentina	7.30	67.51	\$92.02	\$91.59
Brazil	5.15	29.39	N/A	N/A
Canada	76.88	413.01	\$24.87	\$24.87
Chile	4.91	166.80	N/A	N/A
México	5.65	27.43	\$30.78	\$30.78
United States	292.83	346.58	\$22.05	\$22.50
Venezuela	.67	39.30	N/A	N/A
Latin America ^c	5.20	39.66	\$61.40	\$61.19
$OECD^d$	91.76	256.03	\$39.43	\$29.66

^aSource: International Telecommunication Union, <u>Yearbook of Statistics 1991-2000</u>. Geneva: International Telecommunication Union, 2001.

An important e-commerce diffusion indicator is the availability of secure servers, a necessary condition for transactions on the net. Brazil presents a relatively high diffusion of these servers in relation to other Latin American countries although well behind the United States and Canada (Table 16).

^bSource: International Telecommunication Union, <u>World Telecommunication Development Report 2002</u>, <u>Reinventing Telecoms</u>. <u>Geneva</u>: International Telecommunication Union, 2002.

^cLatin America here consists of the following countries: Argentina, Brazil, Chile, Mexico and Venezuela.

^dOECD here denotes the OECD member countries, excluding Luxembourg, Slovakia and Iceland.

TABLE 16 E-Business in the Americas

E-Commerce	Secure servers per 100,000 population 2000 ^a	Secure servers with strong encryption per 100,000 population 2000 ^a	B2B trade in US\$M 2000 ^b	B2C trade in US\$M 2000 ^b	% E- commerce Sales of GDP 2000 ^b
Argentina	.66	.35	\$634.99	\$52.58	.24
Brazil	.59	.34	\$1,720.78	\$202.86	.32
Canada	15.73	14.97	\$12,923.30	\$2,649.52	2.20
Chile	.87	.43	\$228.61	\$15.86	.35
México	.25	.13	\$1,753.86	\$82.35	.32
United States	28.30	25.11	\$118,457.20	\$44,084.29	1.63
Venezuela	.41	.27	\$285.44	\$9.10	.24
Latin America ^c	.50	.28	\$4,623.66	\$362.74	.30
$OECD^d$	10.09	8.39	\$268,500.30	\$69,146.65	1.33

^aSource: Netcraft. http://www.netcraft.com. Strong encryption is defined as having a key length greater than 40 bits (systems limited to a 40-bit key are classified as 'weak' since it has been shown that messages encoded using a 40-bit key with RC4 can be broken in about a week by a good computer science student using facilities available in a good computer science lab).

Transport Infrastructure

The transport system in Brazil is heavily dependent on roads. Air transportation also plays an increasing role, due to the country's large dimensions. While railways have received very little investment in the past four decades, government attention has been directed to integrate the country through roads. This policy is often referred to as a driving force to the development of the automobile industry. However, since the 1980s the investment in roads has faded out, as stabilization policies became a priority. Brazil has a very extensive road network linking most of the country, except in the Amazon where fluvial and air transportation are the only reliable routes. Only 9.7% of Brazilian roads are paved and most of them are short of maintenance care. The concentration of the population in cities will facilitate the delivery of goods ordered on-line, and in part compensate for the vast distances that separate Brazil's many urban centers. Ground package delivery services are provided by both international firms, such as UPS and FedEx, and by local companies, like Varig and the Post Office.

Financial Resources

Use of Credit Cards, Debit Cards and Stored Value Cards

Table 17 reveals that the use of credit cards in Brazil has been growing at a fast pace since the early 1990s. Two factors were key driving forces to the boom. First was the liberalization of the use of credit cards by Brazilians traveling in foreign countries. Second was the stabilization of the national currency, which improved the acceptance of credit

^bSource: IDC, Internet Commerce Market Model, Version 8.1 (2002).

^cLatin America consists of the following countries: Argentina, Brazil, Chile, Mexico and Venezuela.

^dOECD here denotes the OECD member countries, excluding Luxembourg, Slovakia and Iceland

cards by retailers. Brazilian consumers are now the largest users of credit cards in Latin America and the country ranks eighth worldwide, with about 30 million cards issued and over one billion transactions a year. In 2000, overall purchases by credit cards reached US\$26.5 billion, equivalent to 7% of total private domestic consumption in Brazil⁹.

There is a significant correlation between income level and the use of credit cards. According to a survey conducted by Credicard¹⁰, about two-thirds (65%) of consumers with an income level above US\$1,250 a month hold a card while only 19% of people with an income level between \$150 to \$250 do so. About 34% of the Brazilian population over 16 years old living in metropolitan areas with an income level above US\$150 a month hold a credit card.

The use of debit cards was pioneered by Banco do Brasil. Their diffusion has been slow, since the system requires a special terminal installed in shops. Also, it does not provide credit

As far as stored value cards are concerned, there are several versions being tested. Metrocard is one of the most advanced and is being used on an experimental basis in the São Paulo transportation system. However, there is not vet a widely accepted stored value card system for general use in Brazil.

TABLE 17 Credit Card Use in Brazil

Year	Number of Credit Cards in Use (millions)	Number of Transactions (millions)	Value of Transactions (R\$ billions)
1992	7.8	151.6	5.1
1993	8.4	199.9	6.3
1994	11.2	210.3	10.3
1995	14.3	319.0	21.3
1996	17.2	437.1	25.5
1997	19.3	516.7	27.8
1998	22.0	641.2	32.0
1999	23.6	770.0	41.6
2000	27.9	1,038	50.4
2001 (Feb)	29.6	, <u>-</u>	<u>-</u>

Source: ABECS. www.abecs.org.br/indices.htm (last accessed Oct. 1, 2002)

Venture Capital

A report from Latin Venture Partners¹¹ says that private equity investment in Brazil's "new economy" more than tripled to \$3.5 billion in 2000. Despite the slow down in investment estimated for 2001, Brazil remains the region's leader for technology initiatives. Latin Venture says the country will continue to be the primary focus for Internet and other new economy investment in Latin America because of its lead in ecommerce. The report cites that more than half of Latin America's on-line e-commerce

⁹ Source: Gazeta Mercantil Latino-Americana, 12-18 Feb. 2001 pp. 26. ¹⁰ ibidem

¹¹ Web site at: <u>LatinVenture.com</u> (last accessed Aug. 20, 2002)

transactions last year were done in Brazil. Mobile e-commerce, for example, is expected to boom in the next few years, the company says, though current wireless devices are still far from replacing personal computers for Internet access in Brazil. Most investment earmarked for those initiatives will come from outside the country, the report says. It can be noted, however, that since mid-2002, foreign direct investments and venture capital are becoming increasingly difficult to obtain, especially for small start-ups. After the NASDAQ crises and Brazilian external financial problems, investors are much more cautious concerning risky entrepreneurships.

A recent study on venture capital in the Brazilian IT sector¹² collected a wide range of information about mergers, acquisitions and investments, both from foreign and local capital. It covers the period from January 1999 to May 2001. As Table 18 shows, of 406 transactions classified by type, 144 were the issue of shares to the general public, 108 were acquisitions, and 106 were direct investment by one or more investors. Less than 50% of these transactions reached more than US\$10 million.

TABLE 18Venture Capital, Acquisitions, and Share Issues in the Brazilian IT sector

Type of Transaction	Number	%
Acquisition	108	26.60
Concession	5	1.23
Merger	9	2.22
Shares Issue	144	35.47
Joint Venture	34	8.37
Investment	106	26.11
Total	406	100.00

Source: Basques, M.F. (2001)

Table 19 shows sectors of both receivers and investors. While the financial sector is the major investor (about 40% of cases), Internet sites are the main receivers (54% of cases). It can be noted that investment strategies include horizontal integration (acquisitions in the same sectors), diversification, vertical integration and portfolio investments.

¹² Basques, MF. MSc Dissertation, Institute of Economics, UFRJ, 2001.

_

TABLE 19 Investors and Receivers in Brazilian IT by Sector

Investor by Sector	ations	and		ernet	70	ole			Services		
$Receivers \rightarrow$ Investors	Communications	Equipment and Infrastructure	Finance	holding internet	IT Services	Not available	ISP	Sites	Telephone	Traditional	Total
Communications	4	0	0	0	1	0	5	6	0	0	16
Equipment and Infrastructure	2	10	0	0	4	1	4	4	0	0	25
Finance	4	14	3	4	29	5	34	136	4	0	233
Holding Internet	0	1	0	0	2	1	0	8	0	0	12
IT Services	1	0	0	0	19	1	1	9	0	0	31
Internet	0	1	0	0	2	0	1	7	0	0	11
Independent	0	0	4	0	2	0	2	10	0	0	18
Not Available	1	1	2	2	6	4	9	51	2	0	78
Portfolio	1	0	1	0	1	0	1	5	0	0	9
ISP	0	1	0	0	1	1	15	5	1	0	24
Sites	1	0	4	1	1	0	2	34	0	1	44
Telephone Services	2	1	0	0	2	0	10	2	24	0	41
Traditional	2	1	0	2	0	0	1	45	1	0	52
Total	18	30	14	9	70	13	85	322	32	1	594

Source: Basques, M.F. (2001)

NATIONAL POLICY

E-commerce promotion, regulation, and use by government institutions involve different policy instruments, discussion forums, technical skills, and international commitments. As a result, several government and private institutions are in charge of national policies. They have different sources of financing but some initiatives lack both resources and authority to make things happen. Most initiatives have coordination committees with representatives of different government agencies, the private sector and the academic community. However, initiatives by different agencies still lack coordination for better effectiveness.

Policy Institutions

Ministry of Communications/National Telecommunications Agency (ANATEL)

ANATEL is the agency in charge of telecommunications regulations. It was established in 1998 to conduct the privatization program, to fix universalization goals, authorize telecommunications services, control tariffs and enforce the implementation of policies by

incumbent service providers. It is an independent agency organized after the United States FCC model. ANATEL regulates data transmissions, ISPs, and other related matters.

ANATEL administers the two main government funds for IT development: the Telecommunications Universalization Fund (FUST) and the Fund for the Technological Development of Telecommunications (FUNTTEL). FUST is oriented toward financing information and communication technologies for social purposes. It is financed by an additional charge of 1% in telecommunication bills and by concession fees obtained by ANATEL. The other fund, FUNTTEL, is directed to R&D financing in the telecommunication industry. It was created in 2001 and has several financial sources including revenue from annual budget allocations and a sum equivalent to 0.5% of telecom service operating companies' income. The FUNTTEL 2002 budget is about US\$150 million, of which 30% will be directed to CPqD (see below) and the balance to private firms, universities and other public R&D centers.

Ministry of Planning

This ministry coordinates several government actions. The electronic government project aims at providing universal access to public services, more transparency to government actions, achieving more efficiency in the use of information technology and integrating communications networks of public administration. By the end of 2001, more than 30% of all public services that did not require the citizen's physical presence were available on the Internet. A showcase is the national elections, which are almost fully digitalized. In 2000 county pools, which involved more than 80 million voters, the results where known in a few hours after elections closed down all over the country.

Another successful project is government procurement. The Comprasnet program is reputed to be saving up to 25% through Internet reverse auctions and supporting transparency in public goods and services supplies management. In 2002, about 160,000 suppliers were registered on the site and 29,000 calls for offers were issued¹³. However, Internet based purchases still account for only 3% of total government purchases. In June 2002, new legislation was issued (Law 10.520) to facilitate state and federal government on-line purchases. The federal government has more than 4,000 purchase points, an excessive amount, which leads to mismanagement. The government hopes to better control its purchases through centralized e-procurement. At the state level, São Paulo is leading e-procurement with 9% of its total purchases already undertaken on the Internet.

Ministry of Science and Technology

MCT has been responsible for the development of Internet and IT infrastructure since the 1980s. It coordinates several public-private programs such as the Information Society and National Research Network (RNP). The Information Society program's main project is linking about 10,000 libraries through the Internet. It is funded with FUST money, but still

¹³ Source: www.comprasnet.gov.br/ 8/20/2002

lacks a more reliable and stable source of financing. RNP is now planning a high-speed experimental network aiming at providing a testing ground for Internet hardware and software developments. It is supported by FUNTTEL financial resources.

MCT has an important role in high-level education and academic research through CNPq, Brazil's main financial agency for university R&D and postgraduate training. Policies are oriented toward postgraduate and academic research. In 2000, about 3,000 students were undertaking postgraduate courses in computer sciences, of which 20% were pursuing a doctoral degree. In 1999, 461 students obtained a MSc and 65 a PhD degree in computer sciences.

Ministry of Industrial and Trade Development

The MDIC became involved in e-commerce promotion recently. It established the Executive Committee of Electronic Commerce, aimed at resolving existing technical and legal problems and at proposing new policies. MDIC is also in charge of intellectual property issues through the Intitut National de la Propiété Industrielle (INPI). MDIC represents Brazil in several international e-commerce forums, but it lacks both the authority and financial resources to play a more prominent role.

Ministry of Finance

The Ministry of Finance is responsible for implementing the on-line taxation system, for keeping the national electronic funds transfer system (through the Central Bank) and also for proposing legal actions to facilitate fiscal procedures on the Net. It runs a data processing center (SERPRO), which handles most of the IT services for the federal government. The technologies underlying e-commerce offer significant opportunities for improved taxpayer services. The Brazilian tax system is progressively moving on-line. In 2001, 90% of the income tax declarations received by the Federal Tax Authority were handled through the Internet¹⁴. Taxpayers either file directly from a home computer or take a floppy disk to a nearby bank or post office and transmit from terminals especially installed for this purpose. Several other taxes and contributions are migrating to the Internet, but some state taxes have yet to be regulated to legalize operations.

TABLE 20 Evolution of Income Tax Declarations Handled Through the Internet

Year	Number of declarations (1,000)	Percentage of total declarations
1997	706	6%
1998	4,422	30%
1999	11,296	62%
2000	13,500	90%

Source: Receita Federal. www.receita.fazenda.gov.br

¹⁴ Only 14.5 Brazilians are obliged to declare income taxes. People earning less than US\$5,000 a year (which constitute the majority of population) do not pay income taxes.

Table 21 summarizes stakeholders and issues regarding e-commerce in Brazil.

TABLE 21 Stakeholders and Issues in E-commerce

Stakeholders	Electronic Signatures	Telecom Regulations	Intellectual Property	Cryptography	Government Purchase	Internet Infrastructure
ANATEL		X				X
Ministry of Industry	X		X			
Ministry of Planning						
Ministry of Finance				X	X	
Ministry of S&T						X
Business Associations	X			X		
National Congress	X	X		X		

Enabling Policies

Telecommunications Liberalization and Private Investments

Since 1998, when Brazil's telecommunications infrastructure was privatized and the market re-regulated, telecom services have become the most attractive sector for investments. In 2000, telecom investments, as a percentage of the GDP (2.38%), were the highest in Latin America. In that year, total investment in telecom infrastructure reached US\$9 billion—77% in fixed mainlines and 23% in mobile. As a consequence, the availability of telecom services has increased dramatically in a wide range of services.

Differently from the early 1990s, when unfulfilled demand for telephone lines constituted a major problem, there is no longer a shortage of fixed or cellular lines in metropolitan areas. Rather, from 2002 telecommunication operators' problems are mainly non-payment of bills by low-income recently incorporated customers. Some companies are actually disconnecting more telephone lines than installing new ones. They believe that the Brazilian domestic telecommunication market has already reached a ceiling estimated at less than 25% of total households. New investments are now oriented toward a "cream-skimming" strategy to introduce value added services to further serve the more sophisticated and reliable corporate and high income markets. These include high-speed multimedia services using a variety of radio, cable and satellite networks.

Financial Deregulation

The 1990s witnessed significant financial deregulation and liberalization of investment and trade. These have contributed to promote e-commerce development for at least four reasons. First, import liberalization facilitated on-line shopping overseas. Import taxes now average less than 20% and mail orders costing up to US\$50 are imported duty-free.

Second, prior to liberalization, credit cards were valid in Brazil only. International credit cards are of fundamental importance for e-commerce, since about 90% of B2C transactions adopt this form of funds transfer. Third, there are no longer restrictions on foreign direct investment and profit remittance. This has encouraged new foreign ventures, both in e-commerce and associated services. Fourth, liberalization strengthened trade links between local and international supply chains. Consequently, there is an increasing demand for B2B types of e-commerce.

Private and Community Initiatives

As far as private and community initiatives are concerned, two classes of initiatives can be distinguished. One is the National Research Network (RNP¹⁵), which provides high-speed backbones to universities, hospitals and other social institutions by wholesale purchasing and reselling of spare capacity available from private infrastructure providers. The other includes NGO (nongovernmental organization) initiatives such as the Committee for Informatics Democratization and Viva Rio, aimed at providing Internet training to youth in low-income communities.

E-commerce Policy

Legal framework

In Brazil, the e-commerce boom has occurred in the absence of a specific legal framework. In 2001, Congress approved the first legislation on e-commerce concerning authentication of digital signatures. It includes certification of electronic signatures by a public notary and their annexation to electronic documents and the use of a cryptographic system based on public or asymmetric key. The system permits that a codified message be received using a private key de-codified by the correspondent public key. The law established that foreign certified documents would only be accepted if Brazilian contracts receive the same treatment overseas.

The rules governing on-line sales are the same applied to the "Code of Customers Defense". Within Brazilian federal government agencies, official document exchange is already done electronically using a Public Key Infrastructure. The 3585 and 3587 presidential decrees establish that as of January 2001 official documents for normative acts must be transmitted electronically.

A cross-country legislation may be a necessary condition for e-commerce, especially in free-trade areas like Mercosur. In Argentina, the Decree for n. 427/98 is already in force, regulating digital signatures and cryptographic system based on asymmetric key. However, its application is restricted to the public administration.

¹⁵ Rede Nacional de Pesquisas in Portuguese.

Relation to international legal frameworks

There are now several international initiatives to discuss and unify legal frameworks for e-commerce development. Among multilateral and international institutions, the OECD, ITU UNCITRAL and GATT/WTO are the most active to provide guidelines and to promote agreements to develop a comprehensive legal and trade framework for e-commerce. The major concern of these institutions is to build an international regulatory framework:

For Brazilian entrepreneurs seeking to break into world markets via the Internet or by more traditional means, lack of trust is an important barrier. As a developing country Brazil has a reputation, whether warranted or not, for weak laws and law enforcement. Local firms lack internationally known brand names and cultural differences may stand in the way of trust, which is one reason why networks of overseas nationals can be exceedingly valuable to establishing a toehold in foreign markets. Paradoxically, e-commerce suffers from more serious information asymmetries and adverse selection problems than more traditional means of commerce, at least during this initial learning period. To overcome these barriers, Brazilian firms, business associations and government agencies must comply with international agencies' guidelines for contractual terms, adopt standard delivery and payment practices, enforce rules honouring confidentiality of client information and protect transactions from unauthorized "snooping". UNCITRAL e-commerce contract models and OECD Cryptography Policy Guidelines are examples of successful international cooperation for building trust.

As far as e-commerce taxation is concerned, there is not yet a common sense between different countries. The World Trade Organization Secretariat is proposing a widespread liberalization of trade in services. Within WTO, developing countries have raised concerns about possible tariff revenue implications resulting from a ban on customs duties on electronic transmissions. Any decisions that Brazil may make on modifying its tax legislation to accommodate e-commerce will have to take into account the significant role of tax and tariff revenues in its national budget, as well as bilateral concessions in other trade areas. Local taxes on e-commerce activities are also controversial issues not yet settled among different states in Brazilian federation. E-commerce is now treated as a telecommunication service paying up to 25% of value added tax.

CONCLUSIONS

Drivers and Barriers for E-commerce Diffusion

The growth of e-commerce as a business tool is creating new opportunities for market access and organizational innovations. The case of Brazil—a large developing country characterized by a heterogeneous economic and social environment—may well illustrate how environment and policies interact as drivers and barriers for IT diffusion. The role of barriers and drivers are usually different for B2B and B2C and will be discussed separately.

Business to Business

B2B growth in Brazil has been a heterogeneous process according to sectors and regions. It can be noted that e-commerce has a sectorial bias toward information intensive sectors, which are drivers of B2B e-commerce. Transactions realized within and among business areas like finance, communications, information services, and other services can be easily digitized. Consequently, they are naturally high potential users. Business sectors where the diffusion of e-commerce is relatively large have in common the fact that they are transaction-intensive sectors. They rely on frequent data exchange and need online coordination among various agents within the value chain.

Within these information related sectors, history counts. In Brazil, about 30 years of high inflation rates gave rise to a trajectory of increasing demand for financial services. Overnight deposit accounts boomed since cash rapidly lost value. Even after inflation was curbed, checks and credit cards were widely used and a network of agencies provides a wide range of services all over the country. As a consequence, there was an important market for IT in the financial sector and the three major banks invested in hardware and software manufacturing. This strategy was successful, since they could rely on innovative tailor-made solutions not available in the international market. Today, more than two-thirds of all banking transactions done in Brazil are labeled as "electronic", a similar level to advanced countries like the U.S. Brazil is an exporter of banking automation software and equipment and is reputed to be one of the most advanced countries in the world in this respect. Banking automation technology has been also adapted for retailing and other service sectors.

The case of Brazil suggests that, in developing countries, e-commerce constitutes a more selective process than in advanced countries where business practices in different industry branches, regions, and firm sizes are more homogeneous. For firms outside the so-called "modern sectors", which means that they are oriented to less developed and competitive markets and use vintage equipment and outdated business practices, there are important barriers for B2B. Capital and labor have different opportunity costs in developing as compared to developed countries. While capital is usually expensive and inaccessible, semiskilled labor such as telephone attendants, clerks and other professionals, who eventually could be replaced by e-commerce practices, are cheap. Consequently, firms are more reluctant to invest in automation. The investment required to introduce e-commerce is an important diffusion inhibitor since equipment and software are relatively unaffordable for smaller firms and employees are usually unqualified to use and maintain information technologies.

Multinational firms are important driving forces for B2B diffusion. However, we are inclined to argue that more important than the origin of the firm *per se*, is the market power to command a network of suppliers. Large manufacturing companies, nationwide banks, and wholesale and retail firms commanding hierarchical business chains have the capabilities to adopt and power to impose new business practices to their suppliers. These firms are drivers of B2B e-commerce diffusion, regardless of whether they are foreign or locally owned. Unfortunately, the evidence collected in this research is not conclusive about the role of local MNCs in e-commerce diffusion. On the one hand, locally owned

large banks are more intensive e-commerce users than their foreign-owned competitors. On the other, in the manufacturing industry MNCs lead e-commerce diffusion. These leading e-commerce users have in common the fact that they are also leaders in their respective industries.

The evidence provided in this research tends also to challenge the role of globalization as a key driver to e-commerce diffusion. It can be noted that Brazil and Mexico present a similar level of B2B trade (about US\$1.7 billion in 2000), despite the fact that the NAFTA partner is much more globalized. Mexico exports twice as much as Brazil and has a similar GNP level. However, Brazil has three times more secure servers with strong encryption per population (which is a good indicator of B2B development) than Mexico.

Business to Consumer

For B2C, the evidence found in this study shows that good supply alone could not create demand outside of the upper segments of society. Low-income levels and unequal income distribution are major barriers for IT diffusion. Probably, B2C e-commerce will be limited to less than a third of the population and would barely affect the other two-thirds in the near future. The poorer people lack not only buying power but also the access to telephone lines and the educational level required for IT use. E-commerce saturation is likely to affect developed countries too. Hammond (2002) estimates that in North America and northern Europe a saturation point of about 80% of domestic households will be reached by 2010. Southern and eastern European countries would probably reach 56%. For Brazil, we propose saturation point of 35% in that same year.

Low-income levels and unequal income distribution are major barriers for telecom infrastructure development. In Brazil, telecommunications infrastructure has improved substantially in the last four years, due to privatization and legal universalization requirements for telephone operators. From 1998 to 2002, the availability of fixed telephone lines more than doubled, from 22.7 million to 50.7 million. However, telephone operators claim that the market had already reached its ceiling and that there are no longer additional families that can afford to pay a telephone bill. Telephone bills in arrears increased substantially after the network expansion and some operators are now cutting off more lines than installing new ones. Expansion depends on the installation of additional lines to higher-income domestic users. For low-income users, operators are introducing prepaid services in a strategy designed to curb uncollectible bills.

Despite differences in income levels, Brazil has the largest B2C market in Latin America with estimated sales of US\$200 million in 2000. More than 15 million people are already linked to the Internet using digital lines and alternative communications links for ecommerce. Cable modem access is not widely diffused in Brazil (only 13.7 per thousand people), but radio and mobile phone (136 per thousand) present a higher penetration. Cell phones could eventually be used for e-commerce, especially when 2.5 and 3rd generations became widely used. However, the high cost of online time and low transmission speed are

¹⁶ In Brazil, pre-paid services is the most used service for mobile phones but is not yet offered for fixed lines.

barriers for B2C. Larger urban areas have higher bandwidth solutions based on radio, leased lines and DSL.

The Role of Government Policies

The conventional wisdom holds that e-commerce diffusion depends on an appropriate legal framework concerning privacy, intellectual property, and security. The point being made in this paper is that the role of government as a leading e-commerce user and facilitator may be much more relevant to induce private agents to follow suit than just introducing and enforcing specific regulations. The Brazilian case shows that a relatively high diffusion may occur in the absence of specific laws. As Latin America's largest e-commerce market, Brazil has advanced much more in this respect than countries with detailed specific legislation such as Peru. In the absence of legal protections, consumers have evolved their own strategies to protect themselves from negligence, fraud or simply poor service. The use of informal networks to share information about experience with specific products and their suppliers is a common strategy, one that is certainly compatible with e-commerce. Customer brand loyalty is another, but one that may disadvantage new entrants.

The findings of this study concerning government policies show that public agencies may play an important role as drivers and enablers of e-commerce practices. By purchasing online, for example, the federal and some state governments created a strong incentive for suppliers to go on-line. A wide range of public services and information are now available on the Internet in sharp contrast with the usually bad service provided by brick-and-mortar government agencies. Even individuals feel compelled to deal with new technologies in order to vote or pay taxes.

The development of technological capabilities is also an important enabler for e-commerce development. In Brazil, an early public policy towards computer R&D and manufacturing, dating from 1970s stimulated the development of internal technological capabilities in IT (see Tigre and Botelho, 2001). Although most locally owned hardware manufacturing firms disappeared in the early 1990s after the end of the protectionist policy, the accumulated technological capability and entrepreneurship capacity was key for IT diffusion. These capabilities were further used to pioneer into the Internet.

Another driving force was the liberalization and privatization of the telecom sector. Competition and private investments have improved telecom services both quantitatively and qualitatively. Improved and more reliable telecom services, including high-speed connections, boosted both B2B and B2C. By separating regulation from direct management of the telecom services, the Brazilian government through the National Agency for Telecom Services (ANATEL) is now in a position to demand improved quality standards from private telecom operators.

Implications for E-commerce Diffusion

From the discussions in the first three sections these general implications for Brazil and other developing countries' policies emerge:

First, the social and economic barriers for e-commerce diffusion could only be superseded with successful long run development and income distribution policies. Meanwhile, e-commerce policies designed to cope with problems, which are typical of developing countries, could play a positive role. These include IT universalization policies based on shared facilities and subsidies for smaller firms. Standard solutions such as private PCs are probably not adequate for the majority of the Brazilian population. Instead, universalization must rely on telecenters, programs to provide Internet in schools, libraries, post offices and other shared facilities. The use of less expensive hardware, based on the network computer concept, and free software such as LINUX can also be a sound policy. ¹⁷

A second implication concerning government policies is that "demonstration projects" designed to show the viability of e-commerce innovations to the private sector might constitute a sounder policy than simply adopting a "legalist" role. Instead of simply introducing policies for privacy, security, authentication, etc., government should go further in e-commerce promotion, playing a facilitating and enabling role. As a key user, it must innovate and demonstrate the viability of solutions appropriate to local conditions.

A third implication is that Brazil must follow the international debates closely and adjust its own legislation to accommodate e-commerce international agreements, preserve tax revenues, and build trust. Despite the fact that e-commerce legislation is not an important driver in Brazil, compliance with international rules and agreements may help entrepreneurs seeking to break into world markets via the Internet to build trust. Developing countries need to build, from scratch, a reputation of compliance with internationally agreed guidelines for contractual terms, delivery and payment practices, confidentiality and security, in addition to efficient law enforcement. However, the needs and problems posed by leading countries and multinational corporations should not necessarily dictate the policies in less developed countries, since problems may be of a different nature.

¹⁷ The advantage of using free software is twofold. First, the operational system cost is negligible and applied programs usually cost much less than proprietary software. In addition, users will not be exposed to frequent changes in versions and thus not obliged to buy new software and hardware as happen to proprietary software users. Second, the use of open software gives more freedom to users change programs and adapts them to their own needs, since the source code is freely available. It may also become a tool for local firms to enter in the international markets.

REFERENCES

- Banco Central do Brasil (2001). *Boletim Abril*. Brasília.
- Basques, M.F. (2001) Aspectos Competitivos e Estratégias de Investimentos no Setor de Tecnologias da Informação. MSc Dissertation, Instituto de Economia, Universidade Federal do Rio de Janeiro.
- Dedrick, J. & Kraemer, K. (1998). *Asia's Computer Challenge: Threat or Opportunity for the United States and the World?* New York: Oxford University Press.
- Dedrick, J.; Kraemer, K.; Palacios, J.; Tigre, P.; Botelho, A. (2001). Economic Liberalization and the Computer Industry: Comparing Outcomes in Brazil and Mexico. In *World Development* Vol. 29, No. 7, pp. 1199-1214. Pergamon, Elsevier Science Ltd.
- FIESP Federação das Indústrias do Estado de São Paulo (2000). *Integração do Comércio Eletrônico nos Negócios da Empresa*. Available in www.fiesp.com.br
- Goldstein, A. & O'Connor, D. (2000). E-Commerce for Development: Prospects and Policy Issues. *OECD Technical Papers* No. 164, Sept.
- Hammond, K. (2002). O Comércio Eletrônico até 2010. In: HSM Management, No. 32 maio-junho pg. 38-46.
- IBGE Instituto Brasileiro de Geografia e Estatísticas (2001). *Anuário Estatístico*. Brasília.
- IBGE Instituto Brasileiro de Geografía e Estatísticas. *Pesquisa Nacional de Amostra por Domicílio* (PNAD). www.ibge.gov.br/ibge/estatística/populacao/trabalho
- ITU International Telecommunication Union (2000; 2001). Yearbook of Statistics. Geneva
- ITU International Telecommunications Union (2001). World Telecommunication Indicators. Geneva: International Telecommunication Union, March
- Kalakota, R. e Robinson, M. (1999). *E-Business. Roadmap for Success*. Addison-Wesley Information Technology Series.
- Kupfer, D. (2001). Mudança Estrutural nas Empresas e Grupos Líderes da Economia Brasileira na Década de 90. Rio de Janeiro, Instituto de Economia/UFRJ.
- Mansell, R. & Wehn, U. (1998). *Knowledge Societies: Information Technology for Sustainable Development*. New York, Oxford University Press.
- Ministério da Educação (1998). Sinopse Estatística do Ensino Superior Brasília.
- Ministério do Desenvolvimento, Industria e Comercio. *Indicadores*. Available in web page (www.mdic.gov.br/indicadores)
- OECD (1999) Organization for Economic Cooperation and Development. *The Economic and Social Impact of Electronic Commerce*. Paris.
- OECD (2000) Organization for Economic Cooperation and Development. *Information Technology Outlook 2000: ICTs, E-commerce and the Information Economy.* Paris
- Pangariya, A. (2000) *E-Commerce, WTO and Developing Countries*. Policy Issues in International Trade and Commodities. UNCTAD Study Series #2.
- Telcher, S. (2000). Tariffs, Taxes And Electronic Commerce: Revenue Implications For Developing Countries. New York, United Nations.
- Tigre, P.B. and Botelho, A. (2001). *Brazil Meets the Global Challenge: IT Policy in a Postliberalization Environment*. The Information Society, 17:91-103. Taylor and Francis.

- Tigre, P.B. (2001). Inserção no Comércio Eletrônico Global. In Tironi, L.F. (org). *Aspectos Estratégicos da Política Comercial Brasileira* (Vol.2). Brasília, IPEA/IPRI.
- Tigre, P.B. and O'Connor, D. (2001). *Policies and Institutions for E-Commerce Readiness: What Can Developing Countries Learn from OECD Experience?* Paper submitted to Technical Paper Series. OECD Development Centre. Paris, France.
- UN ECOSOC (2000). Report of the meeting of the high level panel of experts on information and telecommunication technology. New York, 17-29 April.
- United Nations Development Programme (2000). *Human Development Report 2000*. New York & Oxford: Oxford University Press
- World Bank (2001). Development Indicators 2001. New York, CD-ROM
- World Bank Group. WDI Data Query located at http://www.devdata.worldbank.org/data-query/.